

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	yaak.inject 0.2.1 documentation

yaak.inject

YAAK stands for Yet Another Application Kit. It’s a set of tools that help
developing enterprise applications in python.

yaak.inject is a package from the YAAK toolkit that provides dependency
injection to your applications. See this Martin Fowler’s article [http://martinfowler.com/articles/injection.html] for
an explanation of dependency injection and its usefulness when developing
enterprise application.

Installation

You should have easy_install (from setuptools or something
equivalent) installed on your system.

To install the package, just type:

$ easy_install yaak.inject

You can also install the package from a source tarball. Decompress the
source archive and type:

$ python setup.py install

Support

This project is hosted on bitbucket.org [https://bitbucket.org/sprat/yaak.inject/].
Please report issues via the bug tracker.

The package documentation can be found here [http://packages.python.org/yaak.inject/].

Automated tests are run over the mercurial repository regularly. Build results
can be found here [https://jenkins.shiningpanda.com/sprat/job/yaak.inject/].

Getting Started

The yaak.inject module implements dependency injection. Here is a
tutorial that explains how to use this module.

First, import the yaak.inject module so that you can use the injection
functionality in your application:

>>> from yaak import inject

Create a class whose instances have to be injected a feature
identified by the string IService (but could be any hashable type, such
as a class):

>>> class Client(object):
... service = inject.Attr('IService') # inject a feature as an attribute
... def use_service(self):
... self.service.do_something() # use the injected feature
...

Also, create a class (or any callable) that implements the feature:

>>> class Service(object):
... def do_something(self):
... print "Service: I'm working hard"
...

Then, when you configure your application, you need to wire an implementation
for each feature. In this case, we provide an implementation for the
IService feature:

>>> inject.provide('IService', Service)

Note that we provide a factory (class) for the feature and not the instance
itself. You’ll see later why.

Now, a Client instance can use the service:

>>> client = Client()
>>> client.use_service()
Service: I'm working hard

When you use the default provide() behavior, all instances
of the Client class will be injected the same Service instance:

>>> another_client = Client()
>>> client.service is another_client.service
True

In fact, the default behavior when you provide() a feature is to create a
thread-local singleton that is injected in all instances that request the
feature. That’s what we call the scope: it defines the lifespan of the
feature instance.

You may want a different IService instance for each Client. You can do that
by changing the default scope to Scope.Transient when you provide the
feature:

>>> inject.provide('IService', Service, scope=inject.Scope.Transient)

Then, a different Service instance is injected in each new Client instance:

>>> client = Client()
>>> another_client = Client()
>>> client.service is another_client.service
False

You can also declare injected features as function/method parameters instead
of attributes:

>>> class Client(object):
... @inject.Param(service='IService')
... def __init__(self, text, service):
... self.text = text
... self.service = service
... def use_service(self):
... print self.text
... self.service.do_something()
...

Then you could use the Client class and get the parameters injected
automatically if you don’t provide a value for them:

>>> client = Client('This is a text')
>>> client.use_service()
This is a text
Service: I'm working hard

That’s the easiest way to declare injected parameters. But if you want to
keep your class decoupled from the injection framework, you can also define
the injection afterwards:

>>> class Client(object):
... def __init__(self, text, service):
... self.text = text
... self.service = service
... def use_service(self):
... print self.text
... self.service.do_something()
...
>>> inject_service = inject.Param(service='IService')
>>> InjectedClient = inject_service(Client)
>>> client = InjectedClient('This is a text')
>>> client.use_service()
This is a text
Service: I'm working hard

Documentation

	API Documentation for yaak.inject 0.2.1
	Defining the injected features

	Providing the features

	Scopes

	Using the default feature provider

	Helper tools

	Exceptions

Changelog

0.2.2 (?)

	Bugfix: the Attr’s injected instances were not rebound when the associated
scope changed

	Simpler implementation of the bind function. Should be faster too!

	The bind function can now be used on functions with varargs

	The bind function can now be used as a decorator

	The bind function doesn’t allow the override of injected parameters
anymore: it was a bad idea!

	The provide method/function can now be used as a decorator

	Removed the late_binding feature since it was not necessary: if you want
to bind an argument with a function object but don’t want it to be called
during the binding, put it inside a lambda.

	Removed logging to reduce clutter: the user can log whatever he wants by
subclassing our classes

	PEP8 conformance

0.2.1 (11-March-2012)

	The setup.py file does not import code anymore in order to retrieve the
version information, since it may cause some installation problems

	Fixed bad years in the changelog, and reordered the items so that the most
recent changes appear first

	Changed the aliases for releasing new versions

	Fixed line endings (unix style)

	Removed the extensions of the text files since it’s a convention in the
Python world

0.2.0 (24-Oct-2011)

	Fixed the broken lock acquire/release implementation when updating the
application context dictionary

	The locking mechanism is now available for all scopes

	The context manager is now responsible for updating the context dictionaries

	Fixed duplicate factory calls when providing a factory returning None

	ScopeManager.enter_scope now raise a ScopeReenterError when re-entering a
scope

	ScopeManager.exit_scope now raise a UndefinedScopeError when exiting an
undeclared scope

	Fixed the API documentation

0.1.0 (23-Oct-2011)

	Initial release

MIT License

Copyright (c) 2011-2012 Sylvain Prat

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, Sylvain Prat.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.2.1

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	yaak.inject 0.2.1 documentation

API Documentation for yaak.inject 0.2.1

Defining the injected features

The Dependency Injection can be performed either by attribute injection or
parameter injection:

	
class yaak.inject.Attr(feature, provider=None)

	Descriptor that provides attribute-based dependency injection.

Inject a feature as an instance attribute. feature can be any
hashable identifier. If a provider is specified, the feature instance
will be retrieved from this provider. Otherwise, the default
feature provider will be used.

	Example:

	>>> from yaak import inject
>>> class Client(object):
... service = inject.Attr('IService')

	
class yaak.inject.Param(provider=None, **injections)

	Decorator that provides parameter-based dependency injection.

Inject feature instances into function parameters. First, specify
the parameters that should be injected as keyword arguments (e.g.
param=<feature> where <feature> is the feature identifier).
Then, each time the function will be called, the parameters will
receive feature instances. If a provider is specified, the feature
instances will be retrieved from this provider. Otherwise, the default
feature provider will be used.

	Example:

	>>> from yaak import inject
>>> class Client(object):
... inject.Param(service='IService')
... def func(self, service):
... pass # use service

Providing the features

	
class yaak.inject.FeatureProvider(scope_manager=None)

	Provides the feature instances for injection when requested. It creates
instances when necessary and uses the scope manager to obtain the scoped
contexts where we store the feature instances.

Creates a feature provider. If scope_manager is specified,
feature instances will be stored in the contexts of the
scope_manager. Otherwise, the default scope manager will be
used.

	
clear()

	Unregister all features.

	
get(feature)

	Retrieve a (scoped) feature instance. Either find the instance in
the associated context or create a new instance using the factory
method and store it in the context. Raises a
yaak.inject.MissingFeatureError when no feature has been
provided yet.

	
provide(feature, factory=None, scope='Thread')

	Provide a factory that build (scoped) instances of the feature.
By default, the scope of the feature instance is
yaak.inject.Scope.Thread, but you can change this by providing
a scope parameter.

Note that you can change the factory for a feature by providing the
same feature again.

Scopes

	
class yaak.inject.Scope

	Enumeration of the different scope values. Not all scopes are available
in every circumstance.

	
Application = 'Application'

	One instance per application (subject to thread-safety issues)

	
Request = 'Request'

	One instance per HTTP request

	
Session = 'Session'

	One instance per HTTP session

	
Thread = 'Thread'

	One instance per thread: this is the default

	
Transient = 'Transient'

	A new instance is created each time the feature is requested

	
class yaak.inject.ScopeManager

	Manages scope contexts where we store the instances to be used for the
injection.

Creates a new scope manager.

	
clear_context(scope)

	Clears the context for a scope, that is, remove all instances
from the scope context.

	
enter_scope(scope, context=None, context_lock=None)

	Called when we enter a scope. You can eventually provide the
context to be used in this scope, that is, a dictionary of
the instances to be injected for each feature. This is especially
useful for implementing session scopes, when we want to reinstall
a previous context. You can also pass a lock to acquire when modifying
the context dictionary via the parameter context_lock if the scope
is subject to thread concurrency issues. Raises a
yaak.inject.ScopeReenterError when re-entering an already
entered scope.

	
exit_scope(scope)

	Called when we exit the scope. Remove the context for this
scope. Raises a yaak.inject.UndefinedScopeError if the
scope is not defined.

	
get_or_create(scope, key, factory)

	Get the value for a key from the scope context, or create one
using the factory provided if there’s no value for this key. Raises
a yaak.inject.UndefinedScopeError if the scope is not
defined.

	
class yaak.inject.ScopeContext(scope, context=None, context_lock=None, scope_manager=None)

	Context manager that defines the lifespan of a scope.

Creates a scope context for the specified scope. If context
is passed a dictionary, the created instances will be stored in
this dictionary. Otherwise, a new dictionary will be created for
storing instance each time we enter the scope. So the context
argument can be used to recall a previous context. If context_lock
is specified, the lock will be acquired/released when the context
dictionary is updated, in order to avoid thread concurrency issues.
If scope_manager is specified, contexts will be stored in this
scope_manager. Otherwise, the default scope manager will be used.

	
class yaak.inject.WSGIRequestScope(app, scope_manager=None)

	WSGI middleware that installs the yaak.inject.Scope.Request
contexts for the wrapped application.

Installs a yaak.inject.Scope.Request context for the
application app. That is, a new context will be used in each HTTP
request for storing the request scoped features. You can eventually
pass the scope_manager that will handle the scope contexts.
Otherwise, the default scope manager will be used.

Using the default feature provider

	
yaak.inject.provide(self, feature, factory=None, scope='Thread')

	Provides a factory for a feature to the default feature provider. See
yaak.inject.FeatureProvider.provide() for more information.

	
yaak.inject.get(self, feature)

	Gets a feature from the default feature provider. See
yaak.inject.FeatureProvider.get() for more information.

	
yaak.inject.clear(self)

	Clears the features from the default feature provider. See
yaak.inject.FeatureProvider.clear() for more information.

Helper tools

	
yaak.inject.bind(func=None, **frozen_args)

	This function is similar to the functools.partial() function: it
implements partial application. That is, it’s a way to transform a function
to another function with less arguments, because some of the arguments of
the original function will get some fixed values: these arguments are
called frozen arguments. But unlike the functools.partial() function,
the frozen parameters can be anywhere in the signature of the transformed
function, they are not required to be the first or last ones. Also, you
can pass a callable as the value of a parameter to get the value from a
call to this function when the bound function is called (this implements
late binding).

Say you have a function add() defined like this:

>>> def add(a, b):
... return a + b

You can bind the parameter b to the value 1:

>>> add_one = bind(add, b=1)

Now, add_one() has only one parameters a since b will always
get the value 1. So:

>>> add_one(1)
2
>>> add_one(2)
3

Now, an example of late binding:

>>> import itertools
>>> count = itertools.count(0)
>>> def more_and_more():
... return count.next()
...
>>> add_more_and_more = bind(add, b=more_and_more)
>>> add_more_and_more(1)
1
>>> add_more_and_more(1)
2
>>> add_more_and_more(1)
3

Exceptions

	
exception yaak.inject.MissingFeatureError

	Exception raised when no implementation has been provided for a
feature.

	
exception yaak.inject.ScopeError

	Base class for all scope related errors

	
exception yaak.inject.UndefinedScopeError

	Exception raised when using a scope that has not been entered yet.

	
exception yaak.inject.ScopeReenterError

	Exception raised when re-entering a scope that has already been
entered.

 Copyright 2011, Sylvain Prat.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.2.1

 Navigation

 	
 index

 	
 modules |

 	yaak.inject 0.2.1 documentation

 Python Module Index

 y

 			

 		
 y	

 	[image: -]
 	
 yaak	

 	
 	
 yaak.inject	

 Copyright 2011, Sylvain Prat.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.2.1

 Navigation

 	
 index

 	
 modules |

 	yaak.inject 0.2.1 documentation

Index

 A
 | B
 | C
 | E
 | F
 | G
 | M
 | P
 | R
 | S
 | T
 | U
 | W
 | Y

A

 	

 	Application (yaak.inject.Scope attribute)

 	

 	Attr (class in yaak.inject)

B

 	

 	bind() (in module yaak.inject)

C

 	

 	clear() (in module yaak.inject)

 	

 	(yaak.inject.FeatureProvider method)

 	

 	clear_context() (yaak.inject.ScopeManager method)

E

 	

 	enter_scope() (yaak.inject.ScopeManager method)

 	

 	exit_scope() (yaak.inject.ScopeManager method)

F

 	

 	FeatureProvider (class in yaak.inject)

G

 	

 	get() (in module yaak.inject)

 	

 	(yaak.inject.FeatureProvider method)

 	

 	get_or_create() (yaak.inject.ScopeManager method)

M

 	

 	MissingFeatureError

P

 	

 	Param (class in yaak.inject)

 	

 	provide() (in module yaak.inject)

 	

 	(yaak.inject.FeatureProvider method)

R

 	

 	Request (yaak.inject.Scope attribute)

S

 	

 	Scope (class in yaak.inject)

 	ScopeContext (class in yaak.inject)

 	ScopeError

 	

 	ScopeManager (class in yaak.inject)

 	ScopeReenterError

 	Session (yaak.inject.Scope attribute)

T

 	

 	Thread (yaak.inject.Scope attribute)

 	

 	Transient (yaak.inject.Scope attribute)

U

 	

 	UndefinedScopeError

W

 	

 	WSGIRequestScope (class in yaak.inject)

Y

 	

 	yaak.inject (module)

 Copyright 2011, Sylvain Prat.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.2.1

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		yaak.inject 0.2.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Sylvain Prat.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.2.1

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

